
CS 134 Programming Exercise 2:
Dirty Laundry

Objective: To gain experience using conditionals.

The Scenario. One thing some students have to figure out for the first time when they come to college
is how to wash their own clothes. By the time many students have figured it out, all their underwear is
pink and T-shirts and other light-colored items are streaked with lots of interesting colors. In the hopes of
helping next year’s first-year students adjust more easily to college, we would like you to write a laundry
sorting simulator.

The Approach. It is usually a good practice to develop programs incrementally. Start with a simplified
version of the full problem. Plan, implement, and test a program for this simplified version. Then, add more
functionality until you have solved the full problem.

To encourage this approach, we have divided this lab into two parts. For the first, we will describe a
laundry sorter with a very simple interface. You should plan, implement, and test a program for this problem
first. Then, in the second part of the assignment we will ask you to add additional functionality.

You should approach each of our two parts in this step-wise fashion. For example, in the first part you
might begin by just writing the instructions to construct the necessary graphical objects without worrying
about any of the mouse event handling. Once your program can draw the picture, you can move on to figure
out how to handle events.

Part 1: The simulator should begin with three wash baskets on the screen (for our purposes they can
just be rectangles or squares). One is labeled “whites”, one “darks”, and the last “colors”. An image showing
the kind of display we have in mind appears below.

When the simulation begins, a color swatch will appear on the screen. The user (“laundry trainee”)
should then click in the corresponding basket. If the user is correct, the program should randomly select a
new color for the next item and display it on the screen. For this part of the assignment you may just select
among the three colors Color.white, Color.red, and Color.black when creating items of clothing. If the
user clicks on an incorrect basket, the original item remains in position for another try.

In the version of this handout found on the course web site, the picture of the program window shown
above is replaced by a working version of the simple laundry sorter. You may want to visit the web page
after you read Part 1 so that you can experiment with the program to clarify any details of the interface
that are not clear to you.

1



A Warning! One odd feature of the simple interface that may bother you a bit is a result of the fact
that the program selects laundry items randomly. Because the selection is truly random it sometimes picks
the same color twice in a row. When this happens and you click on the correct basket for the first item you
will get the feeling that the program ignored you. Even though it has actually displayed a new item, the new
item looks just like the old one, so you may think nothing changed. Don’t let this trick you into thinking
that your version of the program (or ours) isn’t working correctly. The more advanced interface in Part 2
includes counters in the display that make it clearer whether the user succeeded.

Creating a Project For this lab, you will create a project from scratch inside Eclipse:

1. Open the File Menu. Select New and then Project.

2. Select Java, then select Java Project, and then Next.

3. Enter “Landry” as the Project name.

4. Select the Libraries tab.

5. Click Add variable.

6. Select OBJECTDRAW from the list and click OK.

7. Click Finish.

You now have an empty project to which you should add a Java file for your class:

1. Click on “Laundry” in the Package Explorer panel on the left side of the Eclipse window.

2. Open the File Menu. Select New and then Class.

3. Enter “Laundry” as the Name of the class.

4. Enter “WindowController” as the Superclass.

5. Click Finish.

6. You should now have a Laundry.java file inside the Laundry project. Be sure to modify the file so that
it starts with import objectdraw.*; Later, when you start working the colors, you will also need to
import java.awt.*.

Design of Part 1. You will need to design an extension of the WindowController class which will display
the wash baskets and the item to be sorted. Begin by laying out where all the items go on some graph paper.
(We recommend using a window that has height and width of 400 pixels.) The picture should look more or
less like the one above.

When the program begins, place all the wash baskets (with labels) on the screen. Then, add the item
of clothing that is to be sorted. For simplicity you might as well always make the first item have color
white. The item should actually consist of two rectangles, a FilledRect which is the appropriate color and
a FramedRect which is the same size, but lays on top of the filled rectangle to form a border (otherwise it
will be awfully difficult to see a white item!)

2



Think Constants! When you lay out the wash baskets and item, define constants (private static
final ...) for all the relevant information. This makes it easier to change the layout and also makes your
program much, much easier to read (presuming you give constants good names). Constant names are by
convention written with all capital letters and underscores, e.g. THIS IS A CONSTANT. Your constants
may be (and often should be) more complex objects like Locations. You can initialize constants with the
results of a constructor:

private static final Location SOME_LOCN = new Location(100,200);

Remember that you may NOT have constants whose definition uses canvas (e.g., no FramedRect constants).
The widths and heights of wash baskets and the item to be sorted, coordinates of the upper left corner

of each of these, etc., are all good candidates for constants.
After writing the code to draw the initial display, it would be good to run it to see if it does what you

expect. As with last week, you must create a configuration to run your program. These instructions are
basically the same as last week, except that you will use a different name and different dimensions.

• Open the Run menu.

• Select “Run...”

• Select “Java Applet” from the Configurations list.

• Click the New button at the bottom left.

• Make sure that the Name field at the top, the Project, and the Applet class all say Laundry.

• Click on the Parameters tab.

• Enter 400 for the width and 400 for the height.

• Click the Apply button and then the Run button.

Identifying the Correct Basket Once you have done the layout and figured out how to generate new
items, all you have to do is to write the code for the method onMouseClick. Because you may be generating
the item in one method (begin) and checking to see if the user clicked in the appropriate basket in a different
method (the onMouseClick method), you will need to associate some information with an instance variable
that will enable onMouseClick to determine which is the correct basket. An appropriate way to do this is
to use an instance variable of type FramedRect.

When you generate a new item (in either begin or onMouseClick), you will associate the new variable
with the rectangle/basket in which an item of its color should be placed. That way when the user clicks
on a basket, onMouseClick can simply check to see if the rectangle currently associated with the instance
variable contains the point where the mouse was clicked. Then, onMouseClick will either select a new color
for the item (if the user was correct) or wait until the user clicks again (if incorrect).

Recycling Because your program only uses one laundry item at a time, you might as well just recycle
it – reusing the same rectangle for each laundry item. Simply change its color rather than creating a new
rectangle. In general it is a good strategy to reuse objects rather than creating new ones when possible, as
this generally uses less time and does not clutter memory.

Picking a random color To pick a random color, use the RandomIntGenerator class as described in
the textbook (Section 2.9). Since there are 3 colors to select from, you should create your random number
generator to return random numbers in the range of 1 to 3 and associate each of those values with one of
the colors the laundry may have (Color.white, Color.black, and Color.red).

3



Part 2: Once you get the basic version working, we would like you to jazz it up a bit. Here are the
extensions we would like you to make:

1. Add labels (Text items) at the bottom of the picture showing the number of correct and incorrect
placements. This makes it clearer when the student succeeds in placing the item correctly. They
should read something like “correct = nn”, “incorrect = mm”. The value in the first Text item will
be formed by concatenating the string “correct =” with an integer instance variable which keeps track
of the number of correct answers. The other is similar.

2. Users should drag the items to the correct laundry basket rather than just clicking on the basket. Recall
from the example in class that you will need an instance variable to label the last mouse position before
the drag so you can determine how far to drag the item. If the user presses the mouse button down
outside the laundry item, it should not increase the correct or the incorrect counter.

3. Assign the item a randomly generated color by randomly choosing integers redNum, greenNum, and
blueNum between 0 and 255 for each of the red, blue, and green components of the color. You can
create a color from those components by writing new Color(redNum,greenNum,blueNum)).

Now define criteria for determining where each color should go. The simplest criterion is based on the
sum of the three color components. If the sum of the component numbers is less than 230, decide it is
dark, if it is greater than 600, decide it is white. Otherwise it is colored. After you get the program
working you might want to experiment with other criteria.

We will let you figure out most of the details of how to add the features for the more advanced versions.
Note that for the second enhancement drop the onMouseClick method in favor of using the three methods:

• onMousePress – for when the user first clicks on the item - though remember that they might miss.

• onMouseDrag – to do the actual dragging.

• onMouseRelease – check to see if they’ve dropped it in the right place when the mouse is released.

In the version of this handout found on the course web site, there is a working version of the final laundry
sorter. You may want to visit the web page so that you can experiment with the program to clarify any
details of the interface that are not clear to you.

Extra credit We would like you to focus on getting the lab working, writing good comments, and using
good style in your programming. If you have done all that and would like to do more, here is an opportunity
to earn extra credit.

As described above, if the user drops their laundry outside of all baskets, it will count as an incorrect
sorting. For extra credit, you can be nicer to the user. If he/she misses all the baskets, let him/her try again
without increasing either the correct or incorrect counters.

Grading guidelines As with last week’s lab, your grade will have components based on style and on
correctness. Please note that each week we will likely be adding new style guidelines that we will be looking
for in your programs.

Final remarks Try to complete the basic version of the lab before attempting the more advanced features.
Just work on adding one feature at a time, testing each thoroughly before working on the next.

Turning in your program Your program is due at 11p.m. on the evening two days after your lab
(Wednesday if you are in the Monday lab, Thursday if you are in the Tuesday lab). As last time, you need
to export your project before copying it to the dropoff Folder:

4



Table 1: Grading Guidelines

Value Feature
Style, Design, and Efficiency (10 pts total)

2 pts. appropriate comments
2 pts. good variable names
2 pts. good use of constants
2 pts. appropriate formatting
1 pt. does not generate new objects unnecessarily
1 pts. design issues

Correctness (10 pts)
2 pts. generates a new color swatch only if previous one placed correctly
2 pts. swatch displayed in the correct initial position;

returns to original location if incorrectly sorted
2 pts. updates # correct and # incorrect appropriately
2 pts. drags swatch properly (-1 pt if use clicking instead of dragging)
2 pts. appropriate behavior if user does unexpected things like starting

to drag outside the laundry item
Extra credit (1 pt)

1 pt. does not update # correct or # incorrect sorted if user
misses all baskets.

• First, return to Eclipse and make sure you included your name and lab in a comment at the start of
the program.

• Next, click on “Laundry” in the Package Explorer panel on the left side of the Eclipse window.

• Now, select “Export” from the “File” menu.

• Select “File system” in the dialog box and click next.

• Make sure there is a checkmark (not just a line) in the box next to “Laundry” in the left list.

• Click the “Browse” button.

• Open the menu next to “From” and select “Home”.

• Click the “New Folder” button. A good folder name is one that identifies you and the lab you are
working on, such as “JaneDoeLab2” or “JaneDoeLaundry”, replacing JaneDoe with your name. Click
the “Create” button. Then click the “Choose” button. Then click “Finish”.

• Quit Eclipse.

• Open a Finder window and go to your Home. You should see the folder you just created.

• Open a second Finder window by double-clicking the icon near the right side of the dock that looks
like the western hemisphere on top of a disk drive. This will open a folder on the cortland file server.
Double-click the “cs134” folder nested within the window. Within the “cs134” folder you should see
several “Dropoff” folders. There is one for each lab section.

• Drag your new folder into the dropoff folder for your lab. When you do this, the Mac will warn you
that you will not be able to look at this folder. That is fine. Just click “OK”.

Good luck and have fun!

5


